## Exercise Booklet

Print this exercise booklet before studying the lesson on line. It will enable you to write your answers to the HVAC learning exercises. You will thus be able to switch between reading or listening to the file on-line and writing in the booklet.


## CALCULATING WATER AND AIR FLOW RATES PART-1

## English lesson:

https://hvac-learning.com/base-physics/physics-level-1/calculating-water-and-air-flow-rates-part-1/

## French lesson:

https://formation.xpair.com/cours/calcul-pratique-debits-eau-air-partie-1.htm

For each exercise, you will write your answer, then you will study its correction on-line before going to the next exercise.
If you cannot do an exercise, you will be able to study its correction directly, but force yourself to write your
answer as often as possible.
Note that between 2 exercises, you will find it necessary to study the course. As a warning, in the booklet, you will sometimes find the following indication:

- "Study the course on-line before doing the next exercise" or
- "Study the course on-line before going to the next paragraph"

Only study the paragraphs or the exercises which have an equal or a lower level than the one your training requires.
NVQ Level = Vocational Certificate
A Level = High school Diploma
HND Level = Associate's Degree
MSC Level = Engineering Schools
Then, when you have completed a file, you will be able to assess your level on-line through a Multiple Choice Questionnaire in which you will only answer the questions related to the themes you have studied.
So now off you go and work well!
Good luck!
The Authors.

## $\mathrm{N}^{\circ} 1$ - Volumetric heat of water and air in Wh and kWh training - A level

## Study the course on-line before treating the next exercise.



$$
\begin{aligned}
& C_{\text {water }}=4.18[\mathrm{~kJ} / \mathrm{kg} . \mathrm{K}] \quad(3.96 \mathrm{Btu} / \mathrm{kg} . \mathrm{K}) \\
& C_{\text {air }}=1[\mathrm{~kJ} / \mathrm{kg} . \mathrm{K}] \quad(0.95 \mathrm{Btu} / \mathrm{kg} . \mathrm{K}) \\
& C v_{\text {water }}=1.16\left[\mathrm{kWh} / \mathrm{m}^{3} . \mathrm{K}\right] \quad(3,958 \mathrm{Btu} / \mathrm{kg} . \mathrm{K}) \\
& C v_{\text {air }}=0.34\left[\mathrm{~Wh} / \mathrm{m}^{3} . \mathrm{K}\right] \quad(1.16 \mathrm{Btu} / \mathrm{kg} . \mathrm{K})
\end{aligned}
$$

## Question 1

How can we explain that the specific heat of water is vastly superior to that of air?
$1.16\left[\mathrm{kWh} / \mathrm{m}^{3} . \mathrm{K}\right](3,958 \mathrm{Btu} / \mathrm{kg} . \mathrm{K})$ for water and only $0.34\left[\mathrm{~Wh} / \mathrm{m}^{3} \mathrm{~K}\right]$ (1.16 Btu/kg.K) for air.

## Question 2

Knowing that $\rho_{\text {water }}=1000\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$ and $\mathrm{Cm}_{\text {water }}=4.18[\mathrm{~kJ} / \mathrm{kg} . \mathrm{K}](3,958 \mathrm{Btu} / \mathrm{kg} . \mathrm{K})$, demonstrate that $\mathrm{Cv}_{\text {water }} \approx 1.16$ [kWh/m ${ }^{3}$.K].

Knowing that with air at $20\left[{ }^{\circ} \mathrm{C}\right]\left(68{ }^{\circ} \mathrm{F}\right)$ we can accept that:
$\rho_{\text {air }}=1.2\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$ and $\mathrm{C}_{\text {air }}=1[\mathrm{~kJ} / \mathrm{kg} . \mathrm{K}]$. Demonstrate that $\mathrm{C}_{\text {air }} \approx 0.34\left[\mathrm{~Wh} / \mathrm{m}^{3} . \mathrm{K}\right]$.

## $\mathrm{N}^{\circ} 2$ - Calculation of heat required to heat water training - HND level

Study the course on-line before treating the next exercise.

$Q=M \times 4.18 \times \Delta T$ (for water)
With:

- Q: Quantity of heat in [kJ]
- M: Treated mass in [kg]
- 4.18: Specific heat of water in [kJ/kg.K]
$-\Delta T$ : range of temperature loss or gain in $\left[{ }^{\circ} \mathrm{C}\right]($ or $[K])$
$\mathbf{Q}=\mathbf{V} \times 1.16 \times \Delta \mathbf{T}$ (for water)
With:
- Q: Quantity of heat in [kWh]
- V: Treated volume in [m³
- 1.16: Volumetric heat of water in [ $\mathrm{KWh} / \mathrm{m}^{3}$. K]
$-\Delta T$ : range of temperature loss or gain in $\left[{ }^{\circ} \mathrm{C}\right]$ (or $\left.[K]\right)$


## Question 1

Working with volumetric heat, determine in [kWh], the quantity of heat required to heat up 3 [ $\mathrm{m}^{3}$ ] (792 US gal) of water by $15\left[{ }^{\circ} \mathrm{C}\right](15[\mathrm{~K}])$ ?

## Question 2

Working with volumetric heat, determine in [kWh], the quantity of heat required to heat up 500 [I] (132 US gal) of water from 10 to $50\left[{ }^{\circ} \mathrm{C}\right]$ (from $50^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$ )?

## Question 3

What quantity of heat is required in [kWh] to cool 300 [I] (79 US gal) of water from $50\left[{ }^{\circ} \mathrm{C}\right]$ to 15 [ ${ }^{\circ} \mathrm{C}$ ] (from $122^{\circ} \mathrm{F}$ to $59^{\circ} \mathrm{F}$ )?

## Question 4

Knowing that $1[\mathrm{kWh}$ ] corresponds to 3,600 [kJ], what quantity of heat, expressed in [kJ], is required to be removed from $3.5\left[\mathrm{~m}^{3}\right]$ of water for it to cool down from $12\left[{ }^{\circ} \mathrm{C}\right]$ to $7\left[{ }^{\circ} \mathrm{C}\right]$ (from $53.6^{\circ} \mathrm{F}$ to $44.6^{\circ} \mathrm{F}$ )?

## N³ - Relation between flow rate, speed, pipe gauge training - A level

## Study the course on-line before treating the next exercise.

For a given gauge, the higher the speed, the greater will be the flow rate.
$\mathbf{q}_{\mathrm{v}}=\mathbf{v} \times \mathbf{S}$
With:
$-q_{v}$ : volume flow in $\left[m^{3} / s\right]$
$-v$ : fluid velocity in $[\mathrm{m} / \mathrm{s}]$
$-S$ : cross section in $\left[\mathrm{m}^{2}\right]$

## Question 1

In a circular duct of D 710 (diameter $710[\mathrm{~mm}]$ ), air flow is measured at $4[\mathrm{~m} / \mathrm{s}]$.
What is the air flow in $\left[\mathrm{m}^{3} / \mathrm{s}\right]$ and in $\left[\mathrm{m}^{3} / \mathrm{h}\right]$ ?

## Question 2

In a pipeline of D 250 (diameter 250 [mm]), water flow speed is measured at $2[\mathrm{~m} / \mathrm{s}]$.
What is the water flow in $\left[\mathrm{m}^{3} / \mathrm{s}\right]$ and in $\left[\mathrm{m}^{3} / \mathrm{h}\right]$ ?

## Question 3

What in $[\mathrm{m} / \mathrm{s}]$ is an air flow speed of $4,500\left[\mathrm{~m}^{3} / \mathrm{h}\right]$, in a rectangular duct of $500[\mathrm{~mm}] \times 600[\mathrm{~mm}]$ ?

## Question 4

What in $[\mathrm{m} / \mathrm{s}]$ is an air flow speed of $4,000\left[\mathrm{~m}^{3} / \mathrm{h}\right]$, in a pipe of $D 500$ ?

## Question 5

What in [m/s] is a water flow velocity of $350\left[\mathrm{~m}^{3} / \mathrm{h}\right]$, in a pipeline of D 250 ?

## Question 6

We want to pass $15,000\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ of air at $6[\mathrm{~m} / \mathrm{s}]$ through a rectangular duct. What in [ $\left.\mathrm{m}^{2}\right]$ will be the cross section area of the duct? Knowing that the height will be 700 [ mm ], what in [m] will be the width of the duct?

## Question 7

We want to pass $2,800\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ of air at $4[\mathrm{~m} / \mathrm{s}]$ through a circular duct.
What in $\left[\mathrm{m}^{2}\right]$ will be the cross section surface area of the duct?
What in [ m ] will be the diameter of the duct?

## Question 8

We want to pass 9,500 $\left[\mathrm{m}^{3} / \mathrm{h}\right]$ of air at $6[\mathrm{~m} / \mathrm{s}]$ through a circular duct.
What in [ $\mathrm{m}^{2}$ ] will be the cross section surface area of the duct?
What in [m] will be the diameter of the duct?

## $\mathbf{N}^{\circ} 4$ - Relation between flow rate, heat power and temperature difference of air training - A level

## Study the course on-line before treating the next exercise.

$P=q_{v} \times 0.34 \times \Delta T$
With:
$-P$ in [W]
$-q_{v}$ in $\left[m^{3} / h\right]$

- 0.34: Volumetric heat of air in [Wh/m ${ }^{3}$.K]
$-\Delta T$ : Temperature difference gained or lost by air (in [K])


## Question 1

Explain very simply why the introduction of air flow in [ $\mathrm{m}^{3} / \mathrm{h}$ ] leads to power in [W] whereas with water the introduction of a flow in $\left[\mathrm{m}^{3} / \mathrm{h}\right]$ leads to[kW].



AHU heating coil

## Question 2

What is the power in [W] and in [kW] of a unit which heats by $35\left[{ }^{\circ} \mathrm{C}\right](35[\mathrm{~K}])$ an air flow of $750\left[\mathrm{~m}^{3} / \mathrm{h}\right](26,490$ $\mathrm{ft}^{3} /$ hour)?

## Question 3

What is the power of a unit which heats $1,200\left[\mathrm{~m}^{3} / \mathrm{h}\right]\left(42,380 \mathrm{ft}^{3} /\right.$ hour) of air from $15\left[{ }^{\circ} \mathrm{C}\right]$ to 32 [ $\left.{ }^{\circ} \mathrm{C}\right]$ (from $59^{\circ} \mathrm{F}$ to $89.6^{\circ} \mathrm{F}$ )?

## Question 4

What is the power of a heat coil which warm up $3,500\left[\mathrm{~m}^{3} / \mathrm{h}\right]\left(123,600 \mathrm{ft}^{3} / \mathrm{hour}\right)$ of air from $-7\left[{ }^{\circ} \mathrm{C}\right]$ to $+26\left[{ }^{\circ} \mathrm{C}\right]$ (from $19.4^{\circ} \mathrm{F}$ to $78.8^{\circ} \mathrm{F}$ )?

## Question 5

What calorific power was supplied by $180\left[\mathrm{~m}^{3} / \mathrm{h}\right]\left(6,357 \mathrm{ft}^{3} / \mathrm{hour}\right)$ of air blown at $33\left[{ }^{\circ} \mathrm{C}\right]\left(91.4^{\circ} \mathrm{F}\right)$ into a room at 20 $\left[{ }^{\circ} \mathrm{C}\right]\left(68^{\circ} \mathrm{F}\right)$ ?

## Question 6

What cooling power was supplied by $230\left[\mathrm{~m}^{3} / \mathrm{h}\right]\left(8,122 \mathrm{ft}^{3} / \mathrm{hour}\right)$ of air blown at $17\left[{ }^{\circ} \mathrm{C}\right]\left(62.6^{\circ} \mathrm{F}\right)$ into a room at 25 [ $\left.{ }^{\circ} \mathrm{C}\right]\left(77^{\circ} \mathrm{F}\right)$ ?

Study the course on-line before treating the next paragraphe.

## $\mathrm{N}^{\circ} 5$ - International system of units training - HND level

## Study the course on-line before treating the next exercise.



- For water:

| Practical Formula | International Formula |
| :---: | :---: |
| $\begin{aligned} & \mathbf{P}=\mathbf{q}_{\mathbf{v}} \times \mathbf{1 . 1 6} \times \Delta \mathrm{T} \\ & \text { With: } \\ & -P \text { in }[\mathrm{kW}] \\ & -q_{v} \text { in }\left[\mathrm{m}^{3} / h\right] \\ & -1 / 16 \text { Volumetric heat in }\left[\mathrm{kWh} / \mathrm{m}^{3}\right. \\ & \mathrm{K}] \\ & -\Delta T \text { Range of temperature loss or } \\ & \text { gain }(\mathrm{in}[\mathrm{k}]) \end{aligned}$ | $P=q_{m} \times 4.18 \times \Delta T$ <br> With: <br> - Pin [kW] <br> $-q_{m}$ in $[k \mathrm{~kg} / \mathrm{s}]$ <br> - 4.18: Volumetric heat in [kJ/kg K] <br> - $\Delta$ T: Range of temperature loss or gain (in [K]) |

## Question 1

To how many $[\mathrm{kg} / \mathrm{s}]$, does a flow of $12\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ ( 52.8 US gmp ) of water correspond?

Question 2
To how many [kg/s], does a flow of $80[\mathrm{l} / \mathrm{h}]$ ( 0.352 US gmp) of water correspond?

## Question 3

What heating capacity in [kW] is necessary to heat by $45\left[{ }^{\circ} \mathrm{C}\right](45[\mathrm{~K}])$, a water flow of $12\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ ( 52.83 US gmp) ? Use the two available formulas.

## Question 4

What heating capacity in [W] is necessary to heat from $15\left[{ }^{\circ} \mathrm{C}\right]$ to $50\left[{ }^{\circ} \mathrm{C}\right]$ (from $59^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$ ), a water flow of 110 [l/h] (0.484 US gmp)? Use the two available formulas.

- For air:

| Practical Formula Applied to air at $20\left[{ }^{\circ} \mathrm{C}\right]$ | International Formula Applied whatever the air temperature |
| :---: | :---: |
| $\mathrm{P}=\mathrm{q}_{\mathrm{v}} \times 0.34 \times \Delta \mathrm{T}$ <br> With: <br> $-P$ in $[W]$ <br> $-q_{v}$ in $\left[m^{3} h_{h}\right]$ <br> - 0.34: Volumetric heat in $\left[\mathrm{Wh} / \mathrm{m}^{3}\right.$ <br> K <br> - $\Delta T$ : Range of temperature loss or gain | $P=q_{m} \times 1 \times \Delta T=q_{m} \times \Delta T$ <br> With <br> - P in [kW] <br> $-q_{m}$ in $[k g / s]$ <br> - 1 Specific heat of air in [ $\mathrm{kJ} / \mathrm{kg} \mathrm{k}]$ <br> - $\Delta T$ : Range of temperature loss or <br> gain |

## Question 5

Knowing that the density of air at $20\left[{ }^{\circ} \mathrm{C}\right]\left(68^{\circ} \mathrm{F}\right)$ is $1.2\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$, to how many $[\mathrm{kg} / \mathrm{s}]$, does an air flow of 15,000 $\left[\mathrm{m}^{3} / \mathrm{h}\right]\left(529,700 \mathrm{ft}^{3} /\right.$ hour $)$ at $20\left[{ }^{\circ} \mathrm{C}\right]\left(68^{\circ} \mathrm{F}\right)$ correspond?

## Question 6

Knowing that the density of air at $20\left[{ }^{\circ} \mathrm{C}\right]\left(68^{\circ} \mathrm{F}\right)$ is $1.2\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$, to how many $[\mathrm{kg} / \mathrm{s}]$, does an air flow of $8,000\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ ( $282,500 \mathrm{ft}^{3} /$ hour $)$ ) at $20\left[{ }^{\circ} \mathrm{C}\right]\left(68^{\circ} \mathrm{F}\right)$ correspond?

## Question 7

What heating capacity is necessary to heat by $35\left[{ }^{\circ} \mathrm{C}\right](35[\mathrm{~K}])$, an air flow of $15,000\left[\mathrm{~m}^{3} / \mathrm{h}\right]\left(529,700 \mathrm{ft}^{3} / \mathrm{hour}\right)$ (brought to $20\left[{ }^{\circ} \mathrm{C}\right]$ or $68^{\circ} \mathrm{F}$ )? Use the two available formulas.

## Question 8

What heating capacity is required to heat from $-5\left[{ }^{\circ} \mathrm{C}\right]$ to $+27\left[{ }^{\circ} \mathrm{C}\right]$ (from $23^{\circ} \mathrm{F}$ to $80.6^{\circ} \mathrm{F}$ ) an air flow of 2,500 [ $\left.\mathrm{m}^{3} / \mathrm{h}\right]\left(88,290 \mathrm{ft}^{3} / \mathrm{hour}\right.$ ) (brought to $20\left[{ }^{\circ} \mathrm{C}\right]$ or $68^{\circ} \mathrm{F}$ )? Use the two available formulas.

## Nº6 - Which formula to use? HND level

This chapter to be studied only at HND level \& higher.

Study the course on-line before treating the next exercise.

| Practical Formula | International Formula |
| :---: | :---: |
| Water: $P=q_{v} \times 1.16 \times \Delta T$ <br> With: <br> - Pin [kW] <br> $-q_{v}$ in $\left[m^{3} / h\right]$ <br> - 1.16. Volumetric heat in [kWh/m $\left.\mathrm{m}^{3} \mathrm{k}\right]$ <br> - $\Delta T$. Range of temperature loss or <br> gain (in $[k]$ ) | Water: $P=q_{m} \times 4.18 \times \Delta T$ <br> With: <br> - Pin [kW] <br> $-q_{v}$ in $[\mathrm{kg} / \mathrm{s}]$ <br> - C: Specific heat $=4.18[\mathrm{~kJ} / \mathrm{kg}$ K <br> - $\triangle T$ : Range of temperature loss orgain (in $[\mathrm{K}]$ ) |
| Air: $P=q_{v} \times 0.34 \times \Delta T$ <br> With: <br> - Pin [W] <br> $-q_{v}$ in $\left[m^{3} / h\right]$ <br> - 0.34: Volumetric heat in $\left[\mathrm{Wh} / \mathrm{m}^{3} \mathrm{k}\right]$ <br> - $\Delta T$ : Range of temperature loss or gain (in [k]) | Air: $P=q_{m} \times \Delta T$ <br> With: <br> - $\operatorname{Pin}$ [kW] <br> $-q_{v}$ in $[k g / s]$ <br> - $\Delta T$ : Range of temperature loss <br> orgain (in [k]) |

## Nำ - Alternative practical formula used in air conditioning training HND level

This § will only be studied at HND level \& higher. At A level standard training we'll go directly to the final test.

## Study the course on-line before treating the next exercise.



When you study design dossiers of air conditioning systems, for the calculations of heating capacity on air, a new formula will be used leading of course to the same results as the preceding ones (rounded up or down).

$$
P=\frac{q_{v}}{3000} \times \Delta T
$$

With $P$ in $[k W], q_{v}$ in $\left[m^{3} / h\right], \Delta T$ in $[K]$

## Question 1

The power of a unit heating $5,000\left[\mathrm{~m}^{3} / \mathrm{h}\right]\left(176,600 \mathrm{ft}^{3} /\right.$ hour) of air from $8\left[{ }^{\circ} \mathrm{C}\right]$ to $32\left[{ }^{\circ} \mathrm{C}\right]$ (from $46.4^{\circ} \mathrm{F}$ to $89.6^{\circ} \mathrm{F}$ ) is:

$$
P=\frac{5000}{3000} \times(32-8)=40[\mathrm{~kW}]
$$

Check this result using the previously studied formulas ( $P=q_{v} \times 0.34 \times \Delta T$ and $P=q_{m} \times c \times \Delta T$ ).

## English lesson:

https://hvac-learning.com/base-physics/physics-level-1/calculating-water-and-air-flow-rates-part-1/

## French lesson:

https://formation.xpair.com/cours/calcul-pratique-debits-eau-air-partie-1.htm

ADEGEB : All rights are reserved. None of this material may be reproduced or redistributed without HVAC Learning's written permission.

